3.413 \(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=59 \[ \frac {\cos (c+d x)}{a d}-\frac {\sin (c+d x) \cos (c+d x)}{2 a d}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {x}{2 a} \]

[Out]

-1/2*x/a-arctanh(cos(d*x+c))/a/d+cos(d*x+c)/a/d-1/2*cos(d*x+c)*sin(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2839, 2592, 321, 206, 2635, 8} \[ \frac {\cos (c+d x)}{a d}-\frac {\sin (c+d x) \cos (c+d x)}{2 a d}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}-\frac {x}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-x/(2*a) - ArcTanh[Cos[c + d*x]]/(a*d) + Cos[c + d*x]/(a*d) - (Cos[c + d*x]*Sin[c + d*x])/(2*a*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x) \cot (c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac {\int \cos ^2(c+d x) \, dx}{a}+\frac {\int \cos (c+d x) \cot (c+d x) \, dx}{a}\\ &=-\frac {\cos (c+d x) \sin (c+d x)}{2 a d}-\frac {\int 1 \, dx}{2 a}-\frac {\operatorname {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\cos (c+d x)\right )}{a d}\\ &=-\frac {x}{2 a}+\frac {\cos (c+d x)}{a d}-\frac {\cos (c+d x) \sin (c+d x)}{2 a d}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{a d}\\ &=-\frac {x}{2 a}-\frac {\tanh ^{-1}(\cos (c+d x))}{a d}+\frac {\cos (c+d x)}{a d}-\frac {\cos (c+d x) \sin (c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 60, normalized size = 1.02 \[ -\frac {\sin (2 (c+d x))-4 \cos (c+d x)+2 \left (-2 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+c+d x\right )}{4 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-1/4*(-4*Cos[c + d*x] + 2*(c + d*x + 2*Log[Cos[(c + d*x)/2]] - 2*Log[Sin[(c + d*x)/2]]) + Sin[2*(c + d*x)])/(a
*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 57, normalized size = 0.97 \[ -\frac {d x + \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) + \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{2 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(d*x + cos(d*x + c)*sin(d*x + c) - 2*cos(d*x + c) + log(1/2*cos(d*x + c) + 1/2) - log(-1/2*cos(d*x + c) +
 1/2))/(a*d)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 88, normalized size = 1.49 \[ -\frac {\frac {d x + c}{a} - \frac {2 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {2 \, {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*((d*x + c)/a - 2*log(abs(tan(1/2*d*x + 1/2*c)))/a - 2*(tan(1/2*d*x + 1/2*c)^3 + 2*tan(1/2*d*x + 1/2*c)^2
- tan(1/2*d*x + 1/2*c) + 2)/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*a))/d

________________________________________________________________________________________

maple [B]  time = 0.36, size = 159, normalized size = 2.69 \[ \frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {2}{a d \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

1/a/d/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3+2/a/d/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^2-1/
a/d/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)+2/a/d/(1+tan(1/2*d*x+1/2*c)^2)^2-1/a/d*arctan(tan(1/2*d*x+1/
2*c))+1/a/d*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 156, normalized size = 2.64 \[ -\frac {\frac {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 2}{a + \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-((sin(d*x + c)/(cos(d*x + c) + 1) - 2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - sin(d*x + c)^3/(cos(d*x + c) + 1)
^3 - 2)/(a + 2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + arctan(sin(d*x
 + c)/(cos(d*x + c) + 1))/a - log(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d

________________________________________________________________________________________

mupad [B]  time = 8.85, size = 136, normalized size = 2.31 \[ \frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+2}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )}+\frac {\mathrm {atan}\left (\frac {1}{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+2}-\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+2}\right )}{a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4/(sin(c + d*x)*(a + a*sin(c + d*x))),x)

[Out]

log(tan(c/2 + (d*x)/2))/(a*d) + (2*tan(c/2 + (d*x)/2)^2 - tan(c/2 + (d*x)/2) + tan(c/2 + (d*x)/2)^3 + 2)/(d*(a
 + 2*a*tan(c/2 + (d*x)/2)^2 + a*tan(c/2 + (d*x)/2)^4)) + atan(1/(tan(c/2 + (d*x)/2) + 2) - (2*tan(c/2 + (d*x)/
2))/(tan(c/2 + (d*x)/2) + 2))/(a*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________